Part 1 - Optimisation algorithms

3 min read

In this post, we will list some important optimisation algorithms, classed by categories.

Legend:

  • M = Multi-objective
  • C = Constrained
  • U = Unconstrained
  • I = Integer programming
  • sto = Stochastic

1. Global optimisation

Optimisation_algo_global

1.1. Evolutionary optimisation - Population-based

1.1.1. Genetic algorithms

  • Simple Genetic Algorithm (GA) - S / U / I / Sto
  • Non-dominated Sorting Genetic Algorithm (NSGA-II) - M / U / I - 2000
  • Epsilon-Non-dominated Sorting Genetic Algorithm (ε-NSGA-II) - M / U / I - 2006
  • Non-dominated Sorting Genetic Algorithm (NSGA-III) - 2014
  • Reference point based Non-dominated Sorting Genetic Algorithm (R-NSGA-II) - 2018
  • Unified Non-dominated Sorting Genetic Algorithm (U-NSGA-III) - 2016
  • Vector Evaluated Genetic Algorithms (VEGA) - 1985
  • Adapting Scatter Search to Multiobjective Optimization (AbYSS) - 2008
  • Fast Pareto Genetic Algorithm (FastPGA) - 2007
  • Multi-Objective Cellular Genetic Algorithm (MOCell) - 2006
  • Multi-Objective Cross generational elitist selection, Heterogeneous recombination, Cataclysmic mutation (MOCHC) - 2007
  • Biased Random Key Genetic Algorithm (BRKGA)
  • Multi-objective Quantum-inspired Evolutionary Algorithm (MQEA)
  • Reference Point-Based Nondominated Sorting Multi-Objective Quantum-Inspired Evolutionary Algorithm (RN-MQEA)

1.1.2. Differential Evolution

  • Differential Evolution (DE) - S / U
  • Self-adaptive Differential Evolution (jDE, iDE and pDE) - S / U
  • Generalized Differential Evolution 3 (GDE3) - 2005
  • Cellular Differential Evolution (CellDE)

1.1.3. Evolution Strategy

  • Evolution Strategy (ES) - S
  • Covariance Matrix Adaptation Evolution Strategy (CMA-ES) - M / S / U / Sto - 2007
  • Multi-Objective Covariance Matrix Adaptation Evolution Strategy (MO-CMA-ES)
  • Bi-Population Covariance Matrix Adaptation Evolution Strategy (BI-POP CMA-ES)
  • Exponential Evolution Strategy (xNES) - S / U / Sto
  • Pareto Archived Evolutionary Strategy (PAES) - 1999

1.1.4. Indicator-based

  • Indicator Based Evolutionary Algorithm (IBEA) - 2004
  • Simple Indicator-Based Evolutionary Algorithm (SIBEA)
  • Sampling-Based Hypervolume-Oriented Algorithm (SHV)
  • Hypervolume Estimation Algorithm for Multiobjective Optimization (HypE)
  • S-Metric Selection Evolutionary Multiobjective Optimisation Algorithm (SMS-EMOA) - 2007
  • Set Preference Algorithm for Multiobjective Optimization (SPAM)

1.1.5. Decomposition algorithms

  • Multi-Objective Evolutionary Algorithm with Decomposition (MOEA/D) - M / U - 2009
  • Decomposition-Based Evolutionary Algorithm (DBEA) - 2015

1.1.6. Other evolutionary algorithms

  • (N+1)-ES Simple Evolutionary Algorithm (SEA) - S / U / Sto
  • Epsilon-Multi-Objective Evolutionary Algorithm (ε-MOEA) - 2003
  • Pareto Envelope-Based Selection Algorithm II (PESA-II) - 2001
  • Strength Pareto Evolutionary Algorithm (SPEA2) - 2002
  • Duplicate Elimination Non-domination Sorting Evolutionary Algorithm (DENSEA) - 2006
  • Epsilon-Constraint Evolutionary Algorithm (ECEA)
  • Fair Evolutionary Multiobjective Optimizer (FEMO)
  • Simple Evolutionary Multiobjective Optimizer (SEMO2)
  • Multiple Single Objective Pareto Sampling (MSOPS)
  • Borg Multi-Objective Evolutionary Algorithm (Borg MOEA) - 2013
  • Reference Vector Guided Evolutionary Algorithm (RVEA)
  • Estimation of Distribution Algorithm (EDA)
  • Strongly Typed Genetic Programming (STGP)
  • Constrained Two-Archive Evolutionary Algorithm (C-TAEA) - M - 2019

1.2. Other bio-inspired population-based algorithms

1.2.1. Particle Swarm

  • Particle Swarm Optimization (PSO) - S / U
  • Particle Swarm Optimization Generational (GPSO) - S / U / Sto
  • Non-dominated Sorting Particle Swarm Optimization (NSPSO) - M / U
  • Multi-Objective Particle Swarm Optimization (MOPSO or OMOPSO) - 2005
  • Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO) - 2009
  • Multiswarm Particle Swarm Optimization (MPSO)

1.2.2. Ant Colony

  • Ant Colony Optimisation (ACO)
  • Extended Ant Colony Optimization (GACO) - S / C / U / I
  • Multi-objective Hypervolume-based Ant Colony Optimisation (MHACO) - M / U / I

1.2.3. Other

  • Grey Wolf Optimizer (GWO) - S / U
  • Hunting Search Artificial Bee Colony (ABC) - S / U
  • Bees Algorithm Cuckoo Search Memetic algorithm Improved Harmony Search (IHS) - S / M / C / U / I
  • Social Cognitive Optimization (SCO)

1.3. Bayesian Optimisation

  • Gaussian Process (GP)
  • Tree-Structured Parzen Estimator (TPE)

1.4. Brute Force

  • Grid Search (GS)

2. Local optimisation

Optimisation_algo_local

2.1. Gradient-based

  • Hill Climbing (HC)
  • Stochastic Hill Climbing (SHC)
  • Gradient Descent (GD)
  • Stochastic Gradient Descent (SGD)
  • Conjugate Gradient Method (CGD)
  • Method of Moving Asymptotes (MMA) - S / C / U

2.2. Gradient-Free

  • Nelder-Mead Simplex (NMS) - S / U
  • Tabu Search Simulated Annealing (SA) - S / U
  • Greedy Randomized Adaptive Search Procedure (GRASP)
  • Guided Local Search (GLS)
  • Iterated Local Search (ILS)
  • Variable Neighborhood Search (VNS)
  • Random Search (RS)
  • Pattern Search (PS)
  • DIvided RECTangles (DIRECT)

Leave a comment